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Partitioning of a polymer chain between two confining cavities:
The role of electrostatic interactions
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A recently developed lattice field theory approach to the statistical mechanics of charged polymers in
electrolyte solutions@S. Tsonchev, R. D. Coalson, and A. Duncan, Phys. Rev. E60, 4257,~1999!# is gener-
alized to the case where ground-state dominance in the polymer’s Green’s function does not apply. The full
mean-field equations for the system are derived and are shown to possess a unique solution. The approach is
applied to the problem of a charged Gaussian polymer chain confined to move within the region defined by two
fused spheres. The failure of the notion of ground-state dominance under certain conditions even in the limit of
large monomer number is demonstrated.

PACS number~s!: 61.82.Pv, 83.70.Hq, 05.90.1m
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I. INTRODUCTION

The problem of partitioning of a polymer chain betwe
cavities of different size has been of interest for some ti
@1–3#. Investigations of this phenomenon are motivated
the practical importance of techniques for separation of m
romolecules according to their size, such as gel electroph
sis, size exclusion chromatography, membrane separa
filtration, etc.@4#. All these methods rely on the size depe
dence of macromolecular mobility to migrate through a p
rous network of random obstacles. Such networks can
modeled as a complex system of interconnected cavities
channels available to the polymer chain. Hence, underst
ing how a polymer partitions itself between such cavities c
lead to more efficient separation methods. Ultimately, o
hopes to utilize the dependence of polymer partitioning
molecular properties, such as polymer length, electr
charge and electrolyte composition, to selectively sepa
chains according to their molecular weight.

Recently, experimental and theoretical investigatio
@5,6# have explored the ‘‘entropic trapping’’ of polyme
chains in large spherical voids etched into a hydrogel,
have opened the door to potential new methods of macro
lecular separation. Entropic trapping describes the proces
preferential localization of a polymer chain inside a void
larger size than the typical volume pockets in a gel, due
the larger conformational entropy experienced by the po
mer in the large void as compared to that in the sma
pockets of space within the gel. The trapping of the polym
in the large spherical cavity is characterized by the partit
coefficientK, which in the case of a gel is defined as the ra
of the polymer concentrations inside and outside the cav

In a recent paper@7# we investigated the role of exclude
volume interactions between monomers on the partition
of a polymer chain between two connected spheres. In
ticular, we determined the dependence of the partition co
ficient K ~in this case, the ratio of the average number
monomers in each of the two spheres! on the total number of
PRE 621063-651X/2000/62~1!/799~8!/$15.00
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monomers in the chain. The results, which are in qualitat
accord with recent experiments@5# and computer simulations
@6#, showed that previous explanations of polymer partitio
ing based on scaling arguments@1–3# do not provide ad-
equate means for calculatingK at all polymer chain lengths
when excluded volume effects are significant. It was a
shown that for some systems the notion of ground-s
dominance of the polymer’s Green’s function fails even
the limit of large number of monomers.

In this paper we investigate the role of electrostatic int
actions on the partitioning of a charged polymer chain
tween two confining spherical cavities of different size. W
have carried out calculations using the lattice field the
~LFT! approach@8#, based on a formalism which has a num
ber of antecedents in the literature@9–14#.

In Sec. II we generalize the LFT approach to the situat
where ground-state dominance of the polymer’s Gree
function is not assumed. Then, in Sec. III, we discuss
general shape of the total free-energy functional of the s
tem at the mean-field level, and prove that it has a uniq
minimum, thus guaranteeing the existence of a unique s
tion of the mean-field equations. Numerical results from c
culations using three-dimensional~3D! LFT are presented in
Sec. IV, and in Sec. V we summarize our conclusions.

II. LATTICE FIELD THEORY OF CHARGED POLYMER
CHAINS IN ELECTROLYTE SOLUTION

We first extend the formalism presented in@8# to the gen-
eral case where ground-state dominance of the polym
Green’s function does not apply. In Ref.@8# we showed that
the full partition function of a charged polymer in an ele
trolyte solution with short-range monomer repulsion intera
tions can be written as a functional integral:

Z5EDx~rW !Dv~rW !expH ~be/8p!ExDxdrW2l/2Ev~rW !2drW

1c1E eiebxdrW1c2E e2 iebxdrWJ ZSchr~x,v!, ~1!
799 ©2000 The American Physical Society
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whereb51/kT is the inverse temperature,e is the dielectric
constant of the solution,e is the electron charge,l is a mea-
sure of the strength of the excluded volume interactionx
and v are auxiliary fields,c65ebm6/l6

3 with m6 and l6

being the chemical potentials and the thermal deBro
wavelengths for the ions, respectively, and

ZSchr~x,v![E DxW~s!expH 2(3/2ap
2)E

0

M

dsxẆ2~s!2 ipeb

3E dsx„xW~s!…2 ilE dsv„xW~s!…J , ~2!

with M being the total number of monomers in the chainp
the charge per monomer, andap the Kuhn length.

As before@8#, the functional integral~1! can be rerouted
through a complex saddle point atx52 ixc and v5
2 ivc , wherexc andvc are purely real, reducing the com
putation ofZSchr(x,v) at the saddle point to a convention
3D Schrödinger Hamiltonian problem, that is, the comput
tion of matrix elements ofe2HT, with Euclidean time exten
of the evolutionT5M and

H[2
ap

2

6
¹W 21lvc~rW !1bpexc~rW !. ~3!

As usual, the equations determining the saddle-point c
figuration fieldsxc ,vc are obtained by setting the variation
derivative of the exponent in the full functional integral~1!
to zero. In the general case of a polymer chain with free e
the polymer part of the partition function can be written

ZSchr5E dxidxf(
n

Cn~xi !Cn~xf !e
2MEn

5(
n

An
2e2MEn[eFpol, ~4!

whereEn is thenth energy eigenvalue,

An[E drWCn~rW !, ~5!

and
and
e

n-

s

Fpol5 lnS (
n

An
2e2MEnD ~6!

is the negative of the polymer contribution to the free ener
Thus the negative of the total free energy at the saddle p
becomes

F5E drW H be

8p
u¹W xcu21

l

2
vc

21c1ebexc1c2e2bexcJ
1Fpol~xc ,vc!. ~7!

As before@8#, we have

dEn

dxc~rW !
5bpeuCn~rW !u2, ~8!

dEn

dvc~rW !
5luCn~rW !u2. ~9!

Considering the variation of the potential energyV, dV
5bpedxc , we have

dCn~rW !5 (
m,mÞn

^mudVun&
En2Em

Cm~rW !

5bpe (
m,mÞn

Cm~rW !

En2Em
E drW9Cm~rW9!Cn~rW9!dxc~rW9!,

~10!

so that

dCn~rW8!

dxc~rW !
5bpe (

m,mÞn

Cm~rW8!Cm~rW !Cn~rW !

En2Em
. ~11!

Hence,

d

dxc~rW !
~An

2e2MEn!52bpeAnCn~rW ! (
m,mÞn

AmCm~rW !

En2Em
e2MEn

2bpeMAn
2Cn

2~rW !e2MEn, ~12!

and
dFpol

dxc~rW !
5

(
n

d

dxc~rW !
~An

2e2MEn!

(
n

An
2e2MEn

5bpe

(
n,m,mÞn

2AnCn~rW !AmCm~rW !

En2Em
e2MEn2M(

n
„AnCn~rW !…2e2MEn

(
n

An
2e2MEn

. ~13!

Considering the fact that

(
n,m,mÞn

AnCnAmCm

En2Em
e2MEn5 (

m,n,nÞm

AnCnAmCm

Em2En
e2MEm

5
1

2 (
n,m,mÞn

AnCnAmCm

En2Em
~e2MEn2e2MEm!, ~14!
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AnCnAmCm

En2Em
~e2MEn2e2MEm! →

En→Em
2M ~AnCn!2e2MEn,

~15!

we can write Eq.~13! as an unconstrained double sum ov
states:

dFpol

dxc~rW !
5bpe

(
n,m

AnCnAmCm

En2Em
~e2MEn2e2MEm!

(
n

An
2e2MEn

.

~16!

In a similar fashion we obtain

dFpol

dvc~rW !
5l

(
n,m

AnCnAmCm

En2Em
~e2MEn2e2MEm!

(
n

An
2e2MEn

. ~17!

As shown below, the quantity

r~rW ![2

(
n,m

AnCnAmCm

En2Em
~e2MEn2e2MEm!

(
n

An
2e2MEn

~18!

is the total monomer density. Thus, we can finally wr
down the equations determining the saddle-point configu
tion fieldsxc , vc :

1

be

dF

dxc~rW !
52

e

4pe
¹W 2xc~rW !1c1ebexc(rW)

2c2e2bexc(rW)2pr~rW !

50, ~19!

1

l

dF

dvc~rW !
5vc~rW !2r~rW !50. ~20!

Using Eq.~20! the auxiliary fieldvc(rW) can be eliminated,
leaving the following pair of coupled nonlinear equations
describe, at mean-field level, the equilibrium properties o
charged polymer interacting with ions in an electrolyte so
tion:

e

4pe
¹W 2xc~rW !5c1ebexc(rW)2c2e2bexc(rW)2pr~rW !, ~21!

ap
2

6
¹W 2Cn~rW !5lr~rW !Cn~rW !1bpexc~rW !Cn~rW !2EnCn~rW !.

~22!

Equations~21! and~22! are generalizations of Eqs.~20! and
~21! in @8#, as they involve the total monomer density,r(rW),
given by Eq.~18!, instead ofMC0

2(rW), which would be ap-
propriate only in the limit of ground-state dominance. T
equations presented here apply for polymer chains of a
trary length. Inclusion of single-particle potentials, whi
r

a-

a
-

i-

can be used to enforce exclusion regions for either the i
or monomers, is straightforward@8#. Note that the parameter
c6 are exponentials of the chemical potentialsm6 for posi-
tively and negatively charged ions. The numbers of th
ions must be fixed by suitably adjustingc6 to satisfy the
relations

n65c6

] log~Z!

]c6
5c6E e6bexcdrW. ~23!

Next we show thatr(rW) is in fact the monomer density
Starting from the average of the local monomer dens
rn(rW) @15#, we have

rn~rW !5^d~rW2RW n!&

5

E dRW 0dRW M^RW Mue2(M2n)ĤurW&^rWue2nĤuRW 0&

E dRW 0dRW M^RW Mue2MĤuRW 0&

.

~24!

Then the total density is

r~rW !5 (
n50

M

rn~rW !

'E
0

M

dnrn~rW !

5

E
0

M

dnE dRW 0dRW M^RW Mue2(M2n)ĤurW&^rWue2nĤuRW 0&

E dRW 0dRW M^RW Mue2MĤuRW 0&

.

~25!

Invoking spectral decomposition

^rW2ue2mĤurW1&5(
j 50

`

^rW2uC j&^C j urW1&e
2mEj

5(
j 50

`

C j~rW2!C j~rW1!e2mEj , ~26!

we obtain

E dRW 0dRW M^RW Mue2MĤuRW 0&

5(
j 50

` E dRW 0dRW MC j~RW 0!C j~RW M !e2MEj

5(
j 50

`

Aj
2e2MEj . ~27!

Letting
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I ~n!5E dRW 0dRW M^RW Mue2(M2n)ĤurW&^rWue2nĤuRW 0&

5E dRW 0dRW MF (
j 50

`

C j~RW M !C j~rW !e2(M2n)EjG
3F (

k50

`

Ck~RW 0!Ck~rW !e2nEkG
5(

j 50

`

(
k50

`

AjAkC jCke
2MEje2n(Ek2Ej ), ~28!

then

E
0

M

dnI~n!5(
j 50

`

(
k50

`

AjAkC jCke
2MEjE

0

M

dne2n(Ek2Ej )

5(
j 50

`

(
k50

`

AjAkC jCkf ~M ;Ej ,Ek!, ~29!

where

f ~M ;Ej ,Ek!5H e2MEj2e2MEk

Ek2Ej
; for EjÞEk ,

Me2MEj ; for Ej5Ek .

Thus, all in all

r~rW !5

(
j 50

`

(
k50

`

AjAkC jCkf ~M ;Ej ,Ek!

(
j 50

`

Aj
2e2MEj

, ~30!

thereby recovering Eq.~18!. It is easy to see that in the cas
of ground-state dominance, that is, if

M ~E12E0!@1, ~31!

we recover the familiar relationship

r~rW !5MC0
2~rW !, ~32!

and Eqs.~21! and ~22! become identical with Eqs.~20! and
~21! in @8#.

In concluding this section, we should mention that t
functional F(xc ,vc) in Eq. ~7! represents a ‘‘mixed’’ free
energy, since the partition functionZ in Eq. ~1! is canonical
with respect to the polymer chain and grand canonical w
respect to the mobile ions. The advantage of working withF
is that, as will be shown in the next section, it has a uniq
minimum @corresponding to the solution of the mean fie
Eqs.~21! and~22!#, and thus can be used to guide a nume
cal search for the mean electrostatic and monomer den
fields. Once the mean fields have been computed, the d
ing relation lnZ>F(xc ,vc) can be used to obtain free ene
gies of various types. For example, the Helmholtz free
ergy A ~corresponding to fixed numbers of monomers a
h

e

-
ity
n-

-
d

impurity ions! is given by

bA5n1ln c11n2ln c22F~xc ,vc!. ~33!

III. GENERAL FORM OF THE FREE-ENERGY
FUNCTIONAL

In our previous work@8# we showed that in the case o
ground-state dominance the negative of the free energy,F, is
in fact convex, thus guaranteeing a unique solution to
field equations. Of course, convexity, although a sufficie
condition, is not necessary for the existence of a unique lo
minimum of F. We shall see shortly that a weaker, but ne
ertheless sufficient condition for the existence of a uniq
minimum of F is the convexity of the functionaleF. This
latter convexity will be established below for arbitra
boundary conditions~open or closed! for the polymer chain,
implying a unique minimum ofF—a property essential fo
the stability and reliability of the numerical algorithms w
employ to solve the mean-field equations of the theory.

The convexity ofeF implies the existence of a uniqu
local minimum ofF. This connection is due to the fact tha
local minima ofF are inherited byeF, so that the presence o
more than onelocal minimum ofF would necessarily violate
the convexity ofeF. The exponential of the negative of th
mean-field free energy given in Eq.~7! can be expressed a

eF(vc ,xc)5E DxW~s!expH 2(3/2ap
2)E dsxẆ2(s)J

3G„vc ,xW~s!…H„xc ,xW~s!…, ~34!

where

G„vc ,xW~s!…[expH (l/2)E vc
2drW2lE dsvc„xW (s)…J ,

~35!

H„xc ,xW~s!…[expH 2(be/8p)E xcDxcdrW1c1E eebxcdrW

1c2E e2ebxcdrW2pebE dsxc„xW (s)…J .

~36!

@This can also be seen by inspection of Eqs.~1! and~2! with
x,v fixed at the saddle point to2 ixc ,2 ivc , respectively.#
Introducing the line distributionj (rW)[*dsd„rW2xW (s)…, Eqs.
~35!, ~36! become

G„vc ,xW~s!…[expH (l/2)E vc
2drW2lE vc(rW) j (rW)drWJ ,

~37!

H„xc ,xW~s!…[expH 2(be/8p)E xcDxcdrW1c1E eebxcdrW

1c2E e2ebxcdrW2pebE xc(rW) j (rW)drWJ .

~38!

From Eq.~34!, it is apparent that the exponential ofF is a
sum ~over polymer configurations! of positively weighted
products of functionals of the fieldsvc and xc separately.
Accordingly, the convexity ofeF will be guaranteed once we
can demonstrate the convexity of the functionalsG ~as a
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function ofvc) andH ~as a function ofxc) for any arbitrary
fixed polymer configurationxW (s).

The second functional derivative ofG is found after a
short calculation to be

KG~rW,rW8![
d2G

dvc~rW !dvc~rW8!

5$ld~rW2rW8!1l2@vc~rW !2 j ~rW !#

3@vc~rW8!2 j ~rW8!#%G. ~39!

A necessary and sufficient condition for a functionW(rW,rW8)
to be positive semidefinite is that
E drWE drW8 f ~rW !W~rW,rW8! f ~rW8!>0 ~40!

for any functionf (rW). The positivity of the kernelKG in Eq.
~39! is apparent and can be demonstrated by verifying
~40!:

E drWE drW8 f ~rW !KG~rW,rW8! f ~rW8!

5lGE drW f 2~rW !1l2GH E drW f ~rW !@vc~rW !2 j ~rW !#J 2

>0. ~41!

The exponent ofH can be written
2
be

8pE xcDxcdrW1c1E eebxcdrW1c2E e2ebxcdrW2pebE xc~rW ! j ~rW !drW

52
be

8pE S xcDxc1
8ppe

e
xc~rW ! j ~rW ! DdrW1c1E eebxcdrW1c2E e2ebxcdrW

52
be

8p F E S xc1
1

D

4ppe

e
j DDS xc1

1

D

4ppe

e
j DdrW2S 4ppe

e D 2E j D21 jdrWG1c1E eebxcdrW1c2E e2ebxcdrW

52
be

8pE ~xc1 ĵ !D~xc1 ĵ !drW2S 4ppe

e D 2E j D21 jdrW1c1E eebxcdrW1c2E e2ebxcdrW, ~42!

where

ĵ [
1

D

4ppe

e
j . ~43!

Hence,

dH
dxc~rW !

5F2
be

4p
D~xc1 ĵ !~rW !1c1ebeebxc(rW)2c2ebe2ebxc(rW)GH, ~44!

and, therefore,

KH~rW,rW8![
d2H

dxc~rW !dxc~rW8!

5F2
be

4p
D~xc1 ĵ !~rW !1c1ebeebxc(rW)2c2ebe2ebxc(rW)GF2

be

4p
D~xc1 ĵ !~rW8!1c1ebeebxc(rW8)2c2ebe2ebxc(rW8)GH

2
be

4p
D rWd~rW2rW8!H1e2b2d~rW2rW8!~c1eebxc(rW)1c2e2ebxc(rW)!H. ~45!

Property~40! can be easily verified for the first and third terms of Eq.~45!. For the second term one finds

E drWE drW8 f ~rW !@2D rWd~rW2rW8!# f ~rW8!H5E drW f ~rW !@2D f ~rW !#H

5E drWu¹W f u2H>0. ~46!
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This establishes the positivity of the kernelKH , which to-
gether with the positivity ofKG proves the convexity ofeF,
and consequently the existence of unique minimum ofF,
which itself guarantees uniqueness of the solution of
mean-field equations.

IV. THREE-DIMENSIONAL LATTICE FIELD THEORY
RESULTS FOR A CHARGED POLYMER CHAIN
CONFINED TO TWO CONNECTED SPHERES

OF DIFFERENT RADII

We have used a recently developed LFT approach@8# in
order to obtain results of the solution of the mean-field eq
tions ~21! and~22!, for polymer chains confined to 3D cav
ties. In this section we present results of the calculation
the equilibrium monomer distribution of a charged polym
chain constrained to move inside the volume of two co
nected spheres@16#.

After rescaling according tof (rW)→bexc(rW), CN(rW)
→al

3/2CN(rW), and multiplying Eq.~21! by al
3 (al being the

lattice spacing!, we solve the discretized version of Eqs.~21!
and ~22! on a 3D lattice:

a(
mW

DnW mW f mW 5g1ef nW2g2e2 f nW2prnW , ~47!

ap
2

6al
2 (

mW
DnW mW CN,mW 5

l

al
3
rnWCN,nW1p fnWCN,nW2ENCN,nW ,

~48!

where

a5
«al

4pbe2
, ~49!

g65
n6

(
nW

e6 f nW

, ~50!

and the wave functions are dimensionless and normal
according to

(
nW

CN,nW
2 51; ~51!

thus, the densityrnW sums to the total number of monomer
M.

Equations~47! and~48! are solved simultaneously via th
following relaxation procedure@8#. First, the Schro¨dinger
Eq. ~48! is solved using the Lanczos method@18#, setting
f nW50 and ignoring the nonlinear~monomer repulsion! po-
tential term. The resultingCN,nW ’s and corresponding energ
levelsEN ~wave functions and energy eigenvalues of a p
ticle confined to a ‘‘box’’ consisting of two fused sphere!
are used to calculaternW , then the Poisson-Boltzmann E
~47! is solved at each lattice point using a simple line mi
mization procedure@17#. The process is repeated and t
coefficientsg6 are updated after a few iterations until a pr
determined accuracy is achieved. Then the resultingf nW is
used in Eq.~48!, which is solved for a new set ofCN,nW ’s to
e

-

f
r
-

d

-

-

be used in calculating an updated version of the mono
densityrnW . This density is then inputted into Eq.~47! and a
new version off nW is computed. For numerical stability, th
updatedf nW inputted into Eq.~48! is obtained by adding a
small fraction of the newf nW @just obtained from Eq.~47!# to
the old one~obtained from the previous iteration!. The same
‘‘slow charging’’ procedure is used for updatingrnW in the
nonlinear potential term of the Schro¨dinger equation~48!.

This procedure has been applied to two systems:
~1! A polymer in a cavity consisting of two spheres

radii R1 andR2, carved out and sharing one common po
on a lattice, the distance between the centers of the
spheres beingR11R2.

~2! Same as~1!, except that the spheres are now embe
ded in each other by one more lattice spacing, that is,
distance between their centers is nowR11R22al .

We have used the following parameters in relative un
R151.0, R250.8, ap50.2, l50.001, and the two sphere
are carved inside a cube of 44 lattice points on each side
al50.1. In absolute unitsap55 Å.

We have computed the partition coefficientK
[^M1&/^M2& as a function of the total number of monome
in the system,M5^M1&1^M2&, for varying monomer
chargep and varying number of ions in the system. Th
results for system~1! are plotted in Figs. 1 and 2, withn
being the number of negative impurity ions in the syste
while the number of positive ions is adjusted so that elec
neutrality is preserved. Similar to what was found in the ca
of neutral polymers@7#, we see here that for smallM, ln K
increases essentially linearly withM. This is followed by a
turnover region, after which lnK decreases withM, and for
very largeM approaches a limit bounded from below by th
log of the ratio of the volumes of the two spheres.

In Fig. 1 we show results for varying monomer chargep,
keeping the number of impurity ions fixed. It is apparent th
smaller monomer charge favors larger lnK, thus making
polymer separation easier. In Fig. 2 we vary the number
impurity ions, showing that a large number of impurity ion

FIG. 1. The ratio lnK vs M for system~1! for varying monomer
chargep and fixed number of negative impurity ionsn5600, which
corresponds to molar concentrationC'0.75M .
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leads to screening of the monomer charges from each o
and thus to a behavior resembling that of a neutral chain.
observe an interesting feature in the case of a small num
of ions: the lnK curve goes through a turnover, then throu
a minimum and a maximum, before approaching
asymptotic value at largeM.

In Figs. 3 and 4 we show the analogous results to thos
Figs. 1 and 2, respectively, for system~2!. The same basic
behavior is observed, with the partition coefficient bei
smaller for system~2! than for system~1! under identical
conditions of polymer length, monomer charge, and impu
ion concentration. This is because of the wider conduit
system ~2!, which diminishes the isolation of one sphe
from the other, thus enabling the polymer to move mo
freely between the two.

FIG. 2. The ratio lnK vs M for system~1! for varying number of
negative impurity ionsn and fixed monomer chargep. The corre-
sponding molar concentrations areC(n56)'0.7531022M , C(n
560)'0.7531021M , andC(n5600)'0.75M , respectively.

FIG. 3. The ratio lnK vs M for system~2! for varying monomer
chargep and fixed number of negative impurity ionsn5600, which
corresponds to molar concentrationC'0.75M .
er
e
er
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y
n

e

These results are consistent with the ideas presente
our previous work@8#, namely, that higher impurity ion
~electrolyte! concentrations would favor better polymer sep
ration between cavities of different size.

Note that, as we found previously for an uncharged po
mer chain@7#, in the case of system~1! ground-state domi-
nance of the polymer’s Green’s function does not set in
any M. As we increase the total number of monomers,
first two energy levels come closer together and coup
Thus, even in the large-M limit we must retain both these
states in order to calculate an accurate monomer den
r(rW). In Fig. 5 we plotD[exp@2M(E12E0)# vs M as an
indicator of ground-state dominance (D→0 asM→`) for
p520.3 andn5600 for both systems~1! and~2!. It is clear
that in the case of system~1! ground-state dominance doe

FIG. 4. The ratio lnK vs M for system~2! for varying number of
negative impurity ionsn and fixed monomer chargep. The corre-
sponding molar concentrations areC(n56)'0.7531022M , C(n
560)'0.7531021M , andC(n5600)'0.75M , respectively.

FIG. 5. The numberD[exp@2M(E12E0)# as a function ofM
for system ~1! ~minimally-fused system! and system~2! ~large-
aperture system! for monomer chargep520.3 and number of
negative impurity ionsn5600.
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not occur, while for system~2! it occurs, as would be ex
pected for a polymer moving in a single cavity.

V. CONCLUSIONS

We have extended the lattice field theory approach for
statistical mechanics of charged polymers in electrolyte
lutions @8# to the case where ground-state dominance fail
the polymer’s Green’s function. At the mean-field level
thermodynamic properties of the system are obtained f
the solution of two coupled nonlinear equations. These eq
tions involve the full monomer density, which in gener
contains contributions from excited states in the spectral
composition of the polymer’s Green’s function. We ha
also discussed the general shape of the functionalF in Eq.
~7!, whose extremization solves the mean-field equation
interest. In particular we have shown thatF possesses a
single minimum, thus guaranteeing that a unique solution
these equations exists.

We have used this approach to calculate the equilibr
partition coefficientK of a charged Gaussian polymer cha
in a system of two spheres connected by a narrow aper
and have observed the same generic behavior seen in
case of excluded volume interactions only@7#: the log of the
partition coefficient increases essentially linearly with t
number of monomers in the chain,M, for small M, then it
goes through a turnover region with a maximum, after wh
at largeM it decreases to an asymptotic value bounded fr
below by the log of the ratio of the volumes of the tw
spheres. Increasing the monomer charge makes this beh
SA
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n
l
m
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l
e-

of

f

re,
the

h

ior

less pronounced and reduces the maximum in the lnK vs M
curve, while increasing the impurity ion concentration lea
to screening of the monomer charges, and makes the lnK vs
M curve similar to the one in the case of a neutral polym
with excluded volume interactions. This supports our pre
ous contention@8# that higher impurity ion concentration
should lead to better polymer separation between cavitie
different size, such as the cavities in a gel used to observe
entropic trapping phenomenon@5#.

The present work demonstrates the failure of the notion
ground-state dominance in the case of a very narrow con
between the two spheres. For such a system, even in
large-M limit the first excited state of the polymer’s Green
function must be retained in order to obtain an accur
mean-field solution to the problem.

Of course, the accuracy of the mean-field approximat
@15,19# for the systems considered here remains an outsta
ing issue. In the case of electrically neutral polymers, Mo
Carlo simulations may provide valuable benchmarks aga
which mean-field predictions can be compared. Such com
tations are currently under way.
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