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Partitioning of a polymer chain between two confining cavities:
The role of electrostatic interactions
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A recently developed lattice field theory approach to the statistical mechanics of charged polymers in
electrolyte solution$S. Tsonchev, R. D. Coalson, and A. Duncan, Phys. Re§0,&257,(1999] is gener-
alized to the case where ground-state dominance in the polymer’'s Green'’s function does not apply. The full
mean-field equations for the system are derived and are shown to possess a unique solution. The approach is
applied to the problem of a charged Gaussian polymer chain confined to move within the region defined by two
fused spheres. The failure of the notion of ground-state dominance under certain conditions even in the limit of
large monomer number is demonstrated.

PACS numbegps): 61.82.Pv, 83.70.Hg, 05.96m

I. INTRODUCTION monomers in the chain. The results, which are in qualitative
. . accord with recent experimerts] and computer simulations
The problem of partitioning of a polymer chain between|g) showed that previous explanations of polymer partition-
cavities of different size has been of interest for some tlme;ng based on scaling argumerfts—3] do not provide ad-
[1-3]. Investigations of this phenomenon are motivated byequate means for calculatitgat all polymer chain lengths
the practical importance of techniques for separation of macwhen excluded volume effects are significant. It was also
romolecules according to their size, such as gel electrophoreshown that for some systems the notion of ground-state
sis, size exclusion chromatography, membrane separatiodpminance of the polymer's Green’s function fails even in
filtration, etc.[4]. All these methods rely on the size depen-the limit of large number of monomers. o
dence of macromolecular mobility to migrate through a po- !N this paper we investigate the role of electrostatic inter-
rous network of random obstacles. Such networks can bBCtions on the partitioning of a charged polymer chain be-
modeled as a complex system of interconnected cavities art&/een two confining spherical cavities of different size. We

. . ave carried out calculations using the lattice field theory
channels available to the polymer chain. Hence, understancel-_FT) approact{8], based on a formalism which has a num-
ing how a polymer partitions itself between such cavities car o, o antecedent,s in the literatUi@—14.

lead to more efficient separation methods. Ultimately, one |, gec. || we generalize the LFT approach to the situation
hopes to utilize the dependence of polymer partitioning onynere ground-state dominance of the polymer's Green’s
molecular properties, such as polymer length, electricafynction is not assumed. Then, in Sec. Ill, we discuss the
charge and electrolyte composition, to selectively separatgeneral shape of the total free-energy functional of the sys-
chains according to their molecular weight. tem at the mean-field level, and prove that it has a unique
Recently, experimental and theoretical investigationsminimum, thus guaranteeing the existence of a unique solu-
[5,6] have explored the “entropic trapping” of polymer tion of the mean-field equations. Numerical results from cal-
chains in large spherical voids etched into a hydrogel, andulations using three-dimension@D) LFT are presented in
have opened the door to potential new methods of macromaec. IV, and in Sec. V we summarize our conclusions.
lecular separation. Entropic trapping describes the process of
preferential localization of a polymer chain inside a void of Il. LATTICE FIELD THEORY OF CHARGED POLYMER
larger size than the typical volume pockets in a gel, due to CHAINS IN ELECTROLYTE SOLUTION

the "’?‘fgef conformatllonal entropy expenence_d by the poly- We first extend the formalism presented & to the gen-
mer in the large void as compared to that in the smaller

pockets of space within the gel. The trapping of the polymereral case where ground-state dominance of the polymer's

! X Y : .. ~Green'’s function does not apply. In Ré8] we showed that
in the large spherical cavity is characterized by the partltlon[he full partition function of gpcﬁargefﬁgolymer in an elec-

g?f:éc'eg:ﬂ;‘qghc'(;hn'cr;::?a;giz (i)r]:s&il d%elalr? ddgz?ggeafhtgi;ﬂotrolyte solution with short-range monomer repulsion interac-
poly Yiions can be written as a functional integral:

In a recent papdl7] we investigated the role of excluded
volume interactions between monomers on the partitionin%
of a polymer chain between two connected spheres. In pa
ticular, we determined the dependence of the partition coef-
ficient K (in this case, the ratio of the average number of ey v ey
monomers in each of the two spheres the total number of +C+f emdrrc. | e dr | Zson( X, ), @

=fDX(F)Dw(r)exp[(ge/sw)fXAXdF—xlsz(r)zdr
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whereB=1/KT is the inverse temperature,is the dielectric

constant of the solutiore is the electron charga, is a mea- Fpoi= In( > Aﬁe_ME”) (6)

sure of the strength of the excluded volume interactipn, "

and w are auxiliary fieldsc.=e*+/\3 with u. and\. s the negative of the polymer contribution to the free energy.
being the chemical potentials and the thermal deBroglieThus the negative of the total free energy at the saddle point
wavelengths for the ions, respectively, and becomes

M . R A
ZSChI(er)Ej D)'(’(s)expl’—(3/2ar2,)J’0 ds¥(s)—ipep F:f dr*[g—;|vxc|2+§w§+c+eﬁexc+ce—ﬁe)(c]

+FpoI(Xcawc)- (7)

As before[8], we have

xf dsX(i(s))—i)\f ds(u(i(s))], (2

with M being the total number of monomers in the chain,

the charge per monomer, aag the Kuhn length. OE =Bpel ¥ (F)|? (8)
As before[8], the functional integra(l) can be rerouted Oxc(F)

through a complex saddle point at=—iy. and o=

—iw., wherey. and w. are purely real, reducing the com- 6E,

- >\ (2
putation ofZg,(x, ) at the saddle point to a conventional =NWn(M)]%, ©
3D Schralinger Hamiltonian problem, that is, the computa-

tion of matrix elements oé~ ™", with Euclidean time extent Considering the variation of the potential eneryy 5V

dw( I

of the evolutionT=M and = Bpedx., we have
2
ap - N R " (m{ovim)
= — V24 )\ 0 (F) + Bpexc(h). @ W= X o V()
6 m,m#n En Em

As usual, the equations determining the saddle-point con- V() ) » » »
figuration fieldsy, ,w. are obtained by setting the variational :Bpem%n E.—E, AW ()W (F) dx (1),
derivative of the exponent in the full functional integ(a) '
to zero. In the general case of a polymer chain with free ends (10
the polymer part of the partition function can be written so that
Zea [ xS o000 W xpe U SUA(T) WPV ()W ()
g ———=ppe >, - SNGEY
Oxc(F) m,m=n En—Em
=2 A2e MEn=gFpol, (40 Hence,
n
whereE, is thenth energy eigenvalue, (A2 MEn)=28pe AV () > Me_MEn
oxe(f) " mm#n En=Em
A= [ arwn, © - BpeMAE()e e, 12)
and and

2A Y (NALY (T
> —— (A MEn) s AT OATRD e, S (a0 (1) MEr
5Fpol N Oxc(r) B n,m,m#n En—En n 13
= =pBpe :
5XC(r) 2 AﬁefMEn 2 AﬁeiMEn
n n
Considering the fact that
2 An\PnAm\Pme_ME _ 2 An\I,nAm\I,me MEm
n,m,m#n En_Em m,n,n#m Em_En
:E Anq,nAmq,m(e_MEn—e_MEm), (14)
2 n,mm#n En_Em

and
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An‘PnAm‘I’m -ME,_ o—ME, _ 2~—ME,
En_Em (e © )En:)Em M(Anq}n) € '

(19

we can write Eq(13) as an unconstrained double sum over
states:

E AnqrnAm\Pm(efMEn_efMEm)
SF pol am  En—Enm
—=ppe
5X0(r) E Aﬁe_MEn
n
(16)
In a similar fashion we obtain
An‘PnAm‘Pm(e—MEn_e—MEm)
5Fp0| _ n,m En_Em (17)
dw¢(T) 2 .—ME
> A2e MEn
n
As shown below, the quantity
2 An\I,nAm\I,m(e—MEn_e—MEm)
N n,m En_Em
p(F)=— (18
3 e
n

is the total monomer density. Thus, we can finally write

down the equations determining the saddle-point configura-

tion fields x., w.:

1 6F € -
— = — _VZ r +cC e.BeXc(r)
_C,e_BeXC(F)_ pp(r_’)
=0, (19
- oF (MN—=p(r)=0 (20)
N =w.r)—p(r)=0.
Nswy(r) o P

Using Eg.(20) the auxiliary fieldw.(F) can be eliminated,

leaving the following pair of coupled nonlinear equations to
describe, at mean-field level, the equilibrium properties of a
charged polymer interacting with ions in an electrolyte solu-

tion:
€ %2, (Fy—c. efexd) o e BexdN _ no(F
ane’ Xdl)=c.e c_e pp(M), (21)
a2 .
Epvzq,n(r):)\P(F)q,n(f))+BpeXc(F)q,n(F)_Enq,n(F)-

(22

Equations(21) and(22) are generalizations of Eq&0) and
(21) in [8], as they involve the total monomer densitf),
given by Eq.(18), instead ofMW2(), which would be ap-
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can be used to enforce exclusion regions for either the ions
or monomers, is straightforwaf@]. Note that the parameters
c.. are exponentials of the chemical potentials for posi-

tively and negatively charged ions. The numbers of these

ions must be fixed by suitably adjustirg. to satisfy the
relations

dlog(Z)
gc.

L+ =Cy (23

C+J’ e~ Fexcdr,

Next we show thap(r) is in fact the monomer density.
Starting from the average of the local monomer density,
pn(F) [15], we have

pn(F)=(8(F—Ry))

[ aRedRu(Rule O DRIrrle IRy

[ aruaRu(RuleFIRo)
(24)
Then the total density is
M

p(N)=2 pn(F)

n=0

~ fonnPn(F)

M - - - O S
" an [ arudRu(Rule A e Ry
0

| aRudRu(Rule IRy
(25

Invoking spectral decomposition

E

<F2|emﬁ|rl>:§:0 (Pl W) (WylFe ™
:jio W(F)W(F)e” ™5, (26)
we obtain
| dRoaRy(Rule IRy

=]ZO dRodRy ¥ (Ro) W j(Ry) e~ MEi

(27)

propriate only in the limit of ground-state dominance. The
equations presented here apply for polymer chains of arbi-
trary length. Inclusion of single-particle potentials, which Letting

_ 2,.—ME;
—;O Aje i
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s s - _— impurity ions is given by
()= [ dRRu(Rule M Fr(rle " Ry)

BA=n_,Inc,+n_Inc_—F(x; oc). (33
_ [ dRdR U (BT (F)e (M- DE; Ill. GENERAL FORM OF THE FREE-ENERGY
f RodRuy ,Zo i(Rw)¥;(r) FUNCTIONAL

* R In our previous worl{8] we showed that in the case of
X z W Ro)\lfk(r*)e”Ek} ground-state dominance the negative of the free enérgg,
k=0 in fact convex, thus guaranteeing a unique solution to the
0w field equations. Of course, convexity, although a sufficient
= > AAW e MEig N(EE), (28) condition, is not necessary for the existence of a unique local
=0 k= minimum of F. We shall see shortly that a weaker, but nev-
ertheless sufficient condition for the existence of a unique
then minimum of F is the convexity of the functiona”™. This
latter convexity will be established below for arbitrary
M ® o M boundary conditiongopen or closedfor the polymer chain,
J dm(n)zz 2 AjAk\Pj\PkeiMEjf dne MEx—E) implying a unique minimum of—a property essential for
0 j=0 k=0 0 the stability and reliability of the numerical algorithms we

employ to solve the mean-field equations of the theory.

_ i . The convexity ofe™ implies the existence of a unique
_JZO kZO AAT T EMIE] B, (29 |ocal minimum ofF. This connection is due to the fact that
local minima ofF are inherited byeF, so that the presence of
where more than ondocal minimum ofF would necessarily violate
the convexity ofet. The exponential of the negative of the
o~ MEj _ o~ ME mean-field free energy given in E(/) can be expressed as
) T, for EjiEk,
f(MIE} . EW) = k=i ef (e Xc)—f DX s)exp{ (3/2a2)f dsxz(s)]
Me ME;  for E;=E.
Thus, all in all
where
jg 2 AT (ME; L E) g(wc,i(s))zexp{()\/Z)j wgdf—)\f dch(i(s))],
p(1)= - NEY 39
> A% ME
=0 H(XC,)?(S))EeXp[—(,BE/Bﬂ')j XCAXCdF-I—CJrJ’ e®Pxedr
thereby recovering Eq18). It is easy to see that in the case
of ground-state dominance, that is, if +c_f e‘eﬁXch—pe,Bf dsxc(i(s))].
M(E;—Eq)>1, (31) (36)
- ] ] [This can also be seen by inspection of Eds.and(2) with
we recover the familiar relationship x,w fixed at the saddle point tei x.,—iw., respectivelyl
Introducing the line distribution (f)= [dss(F—X(s)), Egs.
- 2, >
p(F)=MWg(r), (32 (35), (36) become
?ano)l _Eq[séng) and(22) become identical with Eqg20) and g(wc,i(s))zexp[()\IZ)j wgdf—)\J wc(f’)j(f’)df’],
in [8].
In concluding this section, we should mention that the (37

functional F(x.,w¢) in Eq. (7) represents a “mixed” free

energy, since the partition functiahin Eq. (1) is canonical H(Xc,i(s))zexp{ —(Be/8¢r)f XA xdr+ c+f e®hxedf
with respect to the polymer chain and grand canonical with

respect to the mobile ions. The advantage of working Wwith —eByen e L

is that, as will be shown in the next section, it has a unique +Cff ¢ XCdr—peﬁf xc(F)j(F)dry.
minimum [corresponding to the solution of the mean field

Egs.(21) and(22)], and thus can be used to guide a numeri- (38)
cal search for the mean electrostatic and monomer densityrom Eq.(34), it is apparent that the exponential Bfis a
fields. Once the mean fields have been computed, the defigum (over polymer configurationsof positively weighted
ing relation InZ=F(x.,0;) can be used to obtain free ener- products of functionals of the fields. and y. separately
gies of various types. For example, the Helmholtz free enAccordingly, the convexity 0™ will be guaranteed once we
ergy A (corresponding to fixed numbers of monomers andcan demonstrate the convexity of the functiongldas a
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function of w;) and’ (as a function ofy.) for any arbitrary
fixed polymer configuratioX(s).

The second functional derivative @f is found after a
short calculation to be

J de dF' f(F)W(F,7" ) F(F')=0 (40)

for any functionf (). The positivity of the kerneK in Eq.
(39 is apparent and can be demonstrated by verifying Eq.

(40):
- &G
Ke(l\f')=——"—
Swc(F) dwe(F") f dff dr’ f(F)Kg(F,F")f(r")
={NO(F=F") + N ()=} (F)] 2
— FE2( 2 FE(F P\ _i(F
X[we(F) =i (F)1}G. (39 —Wf drfs(r)+a gUdrf(r)[wc(r) i(N]
- » . =0. (41)
A necessary and sufficient condition for a functddf{r,r")
to be positive semidefinite is that The exponent of{ can be written

BE - eB - 76[3 - P > -
~ 8. xAxdir+c, | ePXedi+c_ | e ®FXedi—peB | x(Nj(rdr

Be 8mpe .
:_gf (XCAXC+TXC(r)](r)

dF+c+f eeﬁXchJrc,f e ehxedr

1 4mpe 1 4mpe Ampe\?
:—5—; f(XC+K7Tij>A Xet 5 zp j)dr— pr> fjA’ljdr* +c+JeeﬁXcdr+c,Je*eﬁXcdr
€ 4arpe\?
:—g—wj (XC+])A(XC+J‘)dF—(7TTp) fjA‘lde+c+feeBXCdF+c,fe‘eﬁXCdF, (42)
where
1 4mpe,
JEX . ]. (43)
Hence,
oH Be .
= - — N(F ﬁXc(F)_ 7eBXc(F)
) 2780t +c.epe c-epe H, (44)

and, therefore,

5*H
Oxc(1) Ox (")

Ky(F,F")

€ . € =1 =1
= —f—ﬂA(XC+])(F)+c+e,6’eeBXc(F)—c,e,Be‘eBXc(’) —f—WA(XC+])(F’)+C+eﬂeeBXc(’ )—c_epe x|

€ .
- f—WAfa(r— FYH+e?B28(F—F')(c,e®Pxe +c_e ehFxc(N)y, (45)

Property(40) can be easily verified for the first and third terms of E&p). For the second term one finds

j dFJ dF’f(F)[—Aré(F—F’)]f(F’)H=fde(F)[—Af(F)]H

=f df|Vf|2H=0. (46)
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This establishes the positivity of the kerr€l;, which to-
gether with the positivity oK g proves the convexity oé",
and consequently the existence of unique minimumFpf

which itself guarantees uniqueness of the solution of the

mean-field equations.

IV. THREE-DIMENSIONAL LATTICE FIELD THEORY
RESULTS FOR A CHARGED POLYMER CHAIN
CONFINED TO TWO CONNECTED SPHERES
OF DIFFERENT RADII

We have used a recently developed LFT apprda&hn

order to obtain results of the solution of the mean-field equa-

tions (21) and(22), for polymer chains confined to 3D cavi-
ties. In this section we present results of the calculation o
the equilibrium monomer distribution of a charged polymer

chain constrained to move inside the volume of two con-

nected sphergd6].

After rescaling according tof (")— Bex.(F), Wn(F)
—a¥(F), and multiplying Eq.(21) by a? (a, being the
lattice spacing we solve the discretized version of E¢81)
and(22) on a 3D lattice:

aEm Ajfa=ysefi—y_e i—ppg, (47)

2
a A
—£ > Aae¥n =¥ Nt PT¥ e~ EnTna.
6a; m q
(48)
where
€q
-— (49)
47 Be?
n.
‘),i: — ’ (50)

i
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FIG. 1. The ratio IK vs M for system(1) for varying monomer
chargep and fixed number of negative impurity ions= 600, which
corresponds to molar concentrati@a=0.75M.

be used in calculating an updated version of the monomer
densityp;;. This density is then inputted into Eg7) and a
new version off; is computed. For numerical stability, the
updatedf; inputted into Eq.(48) is obtained by adding a
small fraction of the new ; [just obtained from Eq(47)] to

the old one(obtained from the previous iteratipriThe same
“slow charging” procedure is used for updating; in the
nonlinear potential term of the Sclionger equatiorn(48).

This procedure has been applied to two systems:

(1) A polymer in a cavity consisting of two spheres of
radii R; andR,, carved out and sharing one common point
on a lattice, the distance between the centers of the two
spheres bein@R; + R,.

(2) Same ag1), except that the spheres are now embed-
ded in each other by one more lattice spacing, that is, the
distance between their centers is nByW+R,—a, .

We have used the following parameters in relative units:

and the wave functions are dimensionless and normalize@1=1.0, R,=0.8, a,=0.2, A=0.001, and the two spheres

according to

>

i

V2 =1; (51)

ZN

il

thus, the density; sums to the total number of monomers,
M.

Equationg47) and(48) are solved simultaneously via the
following relaxation procedurg8]. First, the Schrdinger
Eq. (48) is solved using the Lanczos methpti8], setting
f7=0 and ignoring the nonlinegimonomer repulsionpo-
tential term. The resulting’ 4's and corresponding energy

are carved inside a cube of 44 lattice points on each side with
a,=0.1. In absolute unita,=5 A.

We have computed the partition coefficienK
=(M1)/(M5) as a function of the total number of monomers
in the system,M=(M;)+(M,), for varying monomer
chargep and varying number of ions in the system. The
results for system(l) are plotted in Figs. 1 and 2, with
being the number of negative impurity ions in the system,
while the number of positive ions is adjusted so that electro-
neutrality is preserved. Similar to what was found in the case
of neutral polymerg7], we see here that for small, InK
increases essentially linearly witfl. This is followed by a

levelsEy (wave functions and energy eigenvalues of a parturnover region, after which I decreases witv, and for

ticle confined to a “box” consisting of two fused spheres
are used to calculatps, then the Poisson-Boltzmann Eq.
(47) is solved at each lattice point using a simple line mini-
mization procedurd17]. The process is repeated and the
coefficientsy.. are updated after a few iterations until a pre-
determined accuracy is achieved. Then the resulfings
used in Eq.(48), which is solved for a new set oF  5's to

very largeM approaches a limit bounded from below by the
log of the ratio of the volumes of the two spheres.

In Fig. 1 we show results for varying monomer chapge
keeping the number of impurity ions fixed. It is apparent that
smaller monomer charge favors largerKinthus making
polymer separation easier. In Fig. 2 we vary the number of
impurity ions, showing that a large number of impurity ions
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1.50 T T T T

1.40 1.30
o—e p=-0.1, n=6

1.30 H =—a p=-0.1, n=60 h 1.20

+— p=-0.1, n=600
o—o p=-0.1, n=6
=—a p=-0.1, n=60
+— p=-0.1, n=600

InK

0.80

' ' ' ) ) ) 0.70 L L 1 1 L L
07000 2000 4000 6000 8000 10000 12000 1400.0 00 2000 4000 6000 8000 10000 1200.0 1400.0
M M
FIG. 2. The ratio IiK vs M for system(1) for varying number of FIG. 4. The ratio li vs M for system(2) for varying number of

negative impurity ions1 and fixed monomer charge The corre- ~ negative impurity ions1 and fixed monomer charge The corre-
sponding molar concentrations a@n=6)~0.75x10"2M, C(n  sponding molar cloncentratlons aEn=6)~0.75< 107_2'\/', C(n
=60)~0.75x 10 M, andC(n=600)~0.75M, respectively. =60)~0.75<10" "M, andC(n=600)~0.75M, respectively.

leads to screening of the monomer charges from each other These results are consistent with the ideas presented in
and thus to a behavior resembling that of a neutral chain. Weur previous work[8], namely, that higher impurity ion
observe an interesting feature in the case of a small numbéelectrolyte concentrations would favor better polymer sepa-
of ions: the IK curve goes through a turnover, then throughration between cavities of different size.

a minimum and a maximum, before approaching its Note that, as we found previously for an uncharged poly-
asymptotic value at largh!. mer chain[7], in the case of systerfl) ground-state domi-

In Figs. 3 and 4 we show the analogous results to those gfance of the polymer's Green’s function does not set in for
Figs. 1 and 2, respectively, for systei@). The same basic any M. As we increase the total number of monomers, the
behavior is observed, with the partition coefficient beingfirst two energy levels come closer together and couple.
smaller for system(2) than for system(1) under identical Thus, even in the larght limit we must retain both these
conditions of polymer length, monomer charge, and impuritystates in order to calculate an accurate monomer density
ion concentration. This is because of the wider conduit inp(F). In Fig. 5 we plotA=exd —M(E;—Ey)] vs M as an
system(2), which diminishes the isolation of one sphere indicator of ground-state dominancA{0 asM —) for
from the other, thus enabling the polymer to move morep=—0.3 andn=600 for both systemgl) and(2). It is clear
freely between the two. that in the case of systeid) ground-state dominance does

1.00

0.90

0.80

0.70 p

o—e minimally-fused system
=—a |arge-aperture system

0.60 |
< 050 |
040 |
0.30 |

0.20 |

0.00 ) ) ) )
0.0 200.0 400.0 600.0 800.0

0.7 L L L M
0.0 500.0 1000.0 1500.0

M
FIG. 5. The numbeA=exd —M(E;,—E,)] as a function ofM

FIG. 3. The ratio IiK vs M for system(2) for varying monomer  for system(1) (minimally-fused systemand system(2) (large-
chargep and fixed number of negative impurity ions= 600, which  aperture systeinfor monomer charggp=—0.3 and number of
corresponds to molar concentrati@a=0.75M. negative impurity ions=600.
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not occur, while for systent2) it occurs, as would be ex- |ess pronounced and reduces the maximum in tHevie M

pected for a polymer moving in a single cavity. curve, while increasing the impurity ion concentration leads
to screening of the monomer charges, and makes te/dén
V. CONCLUSIONS M curve similar to the one in the case of a neutral polymer

D with excluded volume interactions. This supports our previ-
We_ have extended the lattice field theory'approach for th%us contentior{8] that higher impurity ion concentrations
statistical mechanics of charged polymers in electrolyte SO5hould lead to better polymer separation between cavities of
lutions[8] to the case where ground-state dominance fails i
the polymer’s Green'’s function. At the mean-field level all
thermodynamic properties of the system are obtained fro
the solution of two coupled nonlinear equations. These equ

tions involve the full monomer density, which in general

Nifferent size, such as the cavities in a gel used to observe the
entropic trapping phenomengg].

M The present work demonstrates the failure of the notion of
ag'round—state dominance in the case of a very narrow conduit
between the two spheres. For such a system, even in the

" £ 1h | s G 's funci We h eI?alrgeJ\/I limit the first excited state of the polymer’s Green’s
composition ot the polymers Sreen's function. We Naveg,,qtion must be retained in order to obtain an accurate
also discussed the general shape of the functiénial Eq. ean-field solution to the problem

(7), whose extremization solves the mean-field equations o'?1 Of course, the accuracy of the mean-field approximation

|r)ter|est. 'Ir.1 partlct:ﬁlar we hatve .shot\;]vnt thet possessletg, a 515,19] for the systems considered here remains an outstand-
sihgie minimum, thus guaranteeing that a unique solution o ng issue. In the case of electrically neutral polymers, Monte

these equations exists. - - ; -
. ... . Carlo simulations may provide valuable benchmarks against
We have used this approach to calculate the equilibrium y P g

partition coefficientk of a charged Gaussian polymer chain which mean-field predictions can be compared. Such compu-

! tations are currently under way.
in a system of two spheres connected by a narrow aperture, y y

and have observed the same generic behavior seen in the
case of excluded volume interactions ofify}: the log of the
partition coefficient increases essentially linearly with the This work was funded in part by the National Science
number of monomers in the chaiM, for small M, then it  Foundation, Grant No. CHE-9633561. Some of the compu-
goes through a turnover region with a maximum, after whichtations presented were performed at the University of Pitts-
at largeM it decreases to an asymptotic value bounded fronburgh’s Center for Molecular and Materials Simulation. The
below by the log of the ratio of the volumes of the two work of A.D. was supported in part by NSF Grant No. 97-
spheres. Increasing the monomer charge makes this behavi?2097.
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